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OUTLINE

Introduction: the chemical structure — toxicity
modeling continuum

A little bit of methodology: predictive QSTR
modeling workflow

Applications

— Prediction of chemical carcinogenicty in rodents using
hybrid chemical and biological descriptors

— Consensus QSAR modeling of aquatic toxicity

— Structure — In vitro — In vivo Correlations: Biological
Data Partitioning and Hierarchical Modeling of Rodent
Chemical Toxicity

— Concordance between animal and human DILI data

Conclusions: Toxico-cheminformatics i1s a
decision support tool
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Predictive QSAR Worktlow*

* Y-Randomization

| Multiple
"| Training Sets

Original
Dataset

Split into

\4

Training, Test,
and External
Validation Sets

Combi-QSPR
Modeling

Experimental
Validation of
Prioritized Alerts

Multiple
Test Sets

Prediction of
Potential Safety
Alerts to
Prioritize for
Testing

A 4

Activity
Prediction

Only accept models
that have a
9>>0.6
R2 > 0.6, etc.

External validation
Using Applicability
Domain (AD)

Validated Predictive

Models with High Internal

& External Accuracy

*Tropsha, A.,* Golbraikh, A. Predictive QSAR Modeling Workflow, Model

Applicability Domains, and Virtual Screening. Curr. Pharm. Des., 2007, 13, 3494-3504.




Experimental Study I:
The Use of High Throughput
Screening Data as Additional
Biological Descriptors Improves the

Prediction Accuracy of Conventional
QSAR Models of Chemical
Carcinogenicity ™

Zhu et al, EHP, 2008, (116): 506-513




NTP-HTS Content Summary ot
1408 Compounds

e Chemical Types:
—  Organic: 1,348
— Inorganic: 27
—  Organometallic: 19

No structure: 14

e 1348 Organic compounds contain:
— Normal: 1,279
Complex: 51
Salts: 20
Duplicates: 53

e Finally, 1,289 unique organic compounds identified




Characteristics of the
Experimental Activities of 1,289
Compounds

Jurkat Hek293 | HepG2 General

Actives

Inconclusives

Inactives




Additional biological data on
1,289 Compounds

NTP-HTS | NTPBSI |NTPGTZ |HPVCSI IRISSI

1,289 1,153 1,053 423 181

NTPBSI: National Toxicology Program Chemical Structure Index file
NTPGTZ: National Toxicology Program genotoxicity

HPVCSI: High Production Volume Chemicals

CPDB: Carcinogenic Potency Data Base All Species

IRISSI: EPA Integrated Risk Information System

The table is based on the DSSTox project of Dr. Ann Richard at EPA.




Division of the dataset into modeling
and external Sets

e 314 out of 383 CPDB compounds after removing
69 compounds with inconclusive carcinogenicity
results.

Randomly excluded 50 compounds as external test
set.

Using sphere exclusion approach to split the
remaining 264 compounds into multiple
training/test set pairs.




The Relationship between HTS
Results and Rodent
Carcinogenicity

HTS actives HTS inconclusives HTS inactives

CPDB actives 30 | 136

CPDB Inactives 9 13 114

Correlation - 46%
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Prediction accuracy for the external
dataset of 50 Compounds

Chemical descriptors only Combined descriptors

Exp. Actives  Exp. Inactives  Exp. Actives  Exp. Inactives

Pred. actives 18 8 22 6
Pred. inactives 8 10 6 12
Predictivity

Overall Predictivity

Coverage




Comparison between Predictive Power
of QSAR Models using Conventional
vs. Hybrid Descriptors.

@ Chemical (MolConn2)
Descriptors

m Chemical (MolConn2)
Descriptors + Biological (HTS)
Descriptors

Sensitivity Specificity Overall Predictivity




Relative contributions of HTS
descriptors to 34 acceptable models
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Conclusions of the Study I

1. NTP-HTS screening data have limited predictive power
for rodent carcinogenicity.

2. Using the NTP-HTS data as biological fingerprint
descriptors significantly improved the overall QSAR-based
prediction accuracy of rodent carcinogenicity.

3. With sufficient improvements in resulting model
predictive performance, in vitro HTS bioassays, coupled
with traditional chemical structure-based descriptors, may
be ultimately helpful in prioritizing or partially replacing in
vivo toxicity testing



Experimental Study I1I:
Combinatorial QSAR Modeling
of Chemical Toxicants Tested

against Tetrahymena pyriformis*

*Zhu et al, JCIM, 2008, (48): 766-784 ; Tetko et al, JCIM, 2008, ASAP




International Virtual Collaboratory* of

Computational Chemical Toxicology

* USA: UNC-Chapel Hill (UNC) - H. Zhu and A.
Tropsha

France: University of Louis Pasteur (ULP) — D.
FOURCHES and A. VARNEK

Italy: University of Insubria (UI) — E. PAPA and P.
GRAMATICA

Sweden: University of Kalmar (UK) — T. OBERG

Germany: Munich Information Center for Protein

Sequences/Virtual Computational Chemistry
Laboratory (VCCLAB)- 1. TETKO

Canada: Umversity of British Columbia (UBC) —
A. CHERKASOV

*a new networked organizational form that also includes social processes;
collaboration techniques; formal and informal communication; and
agreement on norms, principles, values, and rules




The T. pyriformis toxicity dataset

Compiled from several publications of T.

Schultz’s

group (2001-2005) and the Tetratox

website (

http:// www.vet.utk.edu/TETRATOXY/)

Corrected over 100 errors (chemical structures,

chemical

name and CAS 1ds).

983 unique compounds: 644 compound in
modeling set; 339 compound in the external
validation set I.

110 new compounds from a recent publication
(Schultz et al, 2007) and used as the external
validation set II.




Different countries, different groups,
different tools — shared basic principles
e Explore and combine various QSAR approaches

e Use extensive model validation and applicability
domains

e Consider external prediction accuracy as the
ultimate criteria of model quality

ijs ZI_Z(YGXP _YLOO)z/Z(Yexp_<Y >exp)2 (1)
Y Y

ijs ZI_Z(YGXP B P”ed)z/z(Yexp_<Y >exp)2 (2)
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Overview of the Approaches (15
methodologies total)

Modeling
Techniques

Descriptor
Type

Applicability Domain

kNN, SVM

MolConnZ,
Dragon

Euclidean distance threshold between a test
compound and compounds in the modeling set

MLR, kNN,
SVM

Fragments

Euclidean distance threshold between a compound
and compounds in the modeling set; bounding box

OLS

Dragon

Leverage approach

PLS

Dragon

Residual standard deviation and leverage within
the PLSR model

ASNN

E-state

Maximal correlation coefficient of the test
molecule to the training set molecules in the space
of models

MLR,
ANN,
SVM, PLS

Descriptor variability




The Prediction of the Two Evaluation
Sets by Consensus Models

1st Evaluation Set 2nd Evaluation Set

(n=339) (n=110)
Model Gy

ID R? SE; Coverage R, SEq Coverage

kNN-Dragon UNC 0.30 80.2% 0.77 0.29 52.7%
kNN-MolconnZ UNC 0.31 84.3% 0.50 0.36 53.6%
SVM-Dragon UNC 0.39 80.2% 0.83 0.31 52.7%
SVM-MolconnZ UNC 0.37 84.3% 0.59 041 53.6%
kNN-Fragmental ULP 0.47 100% 0.41 0.53 100%
SVM-Fragmental ULP 0.49 100% 0.46 0.62 100%
MLR ULP 0.43 97.3% 0.48 0.62 95.5%
MLR-CODESSA ULP 0.47 100% 0.59 044 100%
OLS Ul 0.43 98.5% 0.59 049 98.2%

PLS UK 0.40 96.1% 0.60 0.49 95.5%
ASNN 0.33 87.4% 0.76  0.40 71.8%
PLS-IND_I 0.39 99.7% 045 0.54 100%
MLR-IND_I 0.40 99.7% 046 0.53 100%
ANN-IND_I 0.39 99.7% 0.46 0.53 100%
SVM-IND_I 0.35 99.7% 0.53 046 100%




Which model 1s best?

e Observation: Models that atford most accurate
predictions for the validation sets are not
necessarily ranked as top models for the modeling
set.

e Back to choices and practices: So how do we
choose “‘the best” models?

e Consensus Prediction

— Only predict compounds within the applicability
domain of most models

— For each compound, exclude predictions that have high
deviations from the mean value

— Final predicted value 1s the average all predictions.




Consensus Model gives the lowest
MAE of prediction (Validation Set 1I)

Percentage of compounds (validation set 2, n=110, coverage 100%)

100

——Consensus_ll|

CODESSA

—— PLS

-— MLR_frag

0 PREDICTION ERROR| —— ANN_IND_|
T T T T

T T T T T T T T T T T T T T
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Conclusions of the aquatic toxicity
modeling

e Training set modeling is insufficient to guarantee
externally predictive models

e The use of AD is critical to achieve respectable
external predictivity of individual models BUT
one should keep 1in mind the balance between
predictivity and space coverage

e Consensus prediction
— affords the high predictive power
— lowest MAE
— stable against relatively inefficient individual models
— Avoids the problem of choice!!!




Experimental Study III:
Structure — In vitro — In vivo
Correlations: Biological Data
Partitioning and Hierarchical

Modeling of Rodent Chemical
Toxicity *

*7Zhu et al, in preparation




ZEBET Database® and Data
Preparation

cytotoxicity IC50 and both rat and/or
mouse LD50

361 compounds

inorganics, mixtures and heavy metal
salts are removed

291 compounds

both in vitro IC50 values and rat
LD50 results

253 compounds

Random split

*The ZEBET database was

230 compounds 23 compounds provided by Dr. Ann
modeling set validation set Richard (EPA)




Poor 1n vitro-in vivo Correlation
Between IC50 and Rat LLD50 Values
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A New Method to Use in vitro Toxicity

Results to Assist the QSAR Modeling of in
vivo Toxicity Endpoint

e [C50 vs. rat LD50 values

¢ C1 Compounds

= C2 Compounds
Qutliers

— Linear (C1 Compounds)
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Moving Regression for Data

Partitioning
L,if y, € |ax, +b—d,,ax, +b+d,]

n(xi,yi)={

0, otherwise

U(X,-,y,-)~l{

—+—
2 |[1+exp[-P(y, —ax,—b+d,)] 1+exp[P,(y, —ax, —b—dz)]}

F(a,b) = Zl{% %}(n —ax, b}

+
= 2 |[1+exp[=P (y, —ax, =b+d))] 1+explP,(y;, —ax, —b—-d,)]




Cytotoxicity IC50 Values vs. Other in vivo
Toxicity Results

e [C50 vs. mouse LLD50
values

e IC50 vs. rat NOAEL
values

e JC50 vs. rat LOAEL
values




Modeling Worktlow




Prediction Worktlow
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Classification of the Rat LD30 Values
for the External Set of 23 Compounds

No AD: With AD:
Classification rate = 62% Classification rate = 78%

Pred. |Pred. Pred. |Pred.
Cl C2 Cl

7 2 . |6




Prediction of the Rat LLD50 Values of the
External 23 Compounds

e R?=0.79, MAE=0.37, Coverage=74% (17 out of 23)

m C2 compounds
A C1 compounds

Pred.Log(1/LD50)

-0.50 0.00
Exp.Log(1/LD50)




Prediction of New ZEBET
Compounds

e Additional 115 ZEBET compounds with rat LD30
testing results obtained from Interagency

Coordinating Committee on the Validation of
Alternative Methods (ICCVAM).

* R?, MAE and prediction coverage of 0.60, 0.46,
and 62%




Comparison Between Our Model and Toxicity
Prediction by Komputer Assisted Technology

(TOPKAT) LD50 Predictor

e 27 outof the 115 new ZEBET compounds that do
not exist in the TOPKAT LDS50 training set
(version 6.1).

e Prediction of 27 new ZEBET compounds

Our model TOPKAT

No AD

With AD

No AD

With AD

RZ

0.69

0.73

0.16

0.50

MAE

0.42

0.34

0.78

0.46

Coverage

100%

70%

100%

70%




RTECS Rat Oral LD50 Dataset
Overview

e 7,385 unique compounds total after removing
inorganic compounds and mixtures.

Split the whole dataset into two parts: 3,472
compound modeling set and 3,913 compound
validation set. All the compounds in the validation

set were not included in the TOPKAT LDS0
Predictor training set (version 6.1).




QSAR Methods

UNC: Random Forrest (RF) and kNN

EPA: Hierarchical Modeling, Nearest Neighbor
(NN), FDA QSAR

Descriptors: Dragon descriptors, fragmental
descriptors

Various types of Applicability Domain (AD)




7 Individual QSAR Models

e UNC: RF (two models) and KNN*

 EPA: Hierarchical with fragment constraint, Hierarchical
no fragment constraint, NN, FDA QSAR

*UNC group used two modeling set: the original 3,472
compound modeling set and a reduced modeling set
(2,4°75) after removing 997 structural outliers. RF model
were developed for both sets and kNN models were only
developed for reduced set.




External Validation Results for 7
Individual Models

Hierarchi Hierarchi
cal with  cal no
RF_full RF_red kNN_red fragment fragment Nearest
set set set  constraint constraint neighbor  FDA

R2 0.57 0.7 0.66 0.36 0.27 0.24 0.29

MAE 0.46 0.41 0.44 0.58 0.60 0.61 0.60

Coverage 50% 20% 20% 66% 93% 97% 95%




The Comparison Between Combi-
QSAR and TOPKAT Results

Consensus Consensus Consensus
(at least 1 (70% of (All
model) TOPKAT models.) TOPKAT models) TOPKAT

Coverage 100% 100% 41% 41% 16%




Experimental Study I'V:
Concordance between animal and
human DILI data *

*7Zhu et al, 1n preparation




Introduction

Hepatotoxicity is a major safety concern for
drug development, as being a leadi
of candidate attrition.

Sources : M. Fung et al. Drug Information Journal, 2001

MDS Pharma Services Issue,[2008, 7, 1-13 ;;v;né
Recently, the Safety Intelligence Program (SIP)
group members performed a data analysjs in order
fo assess the degree of concordanc
species for drug-induced liver effects”, and thus, to

complete the “Non-Clinical Guideline On Drug-
Induced Hepatoxicity’” published by the European
Medicines Agency (EMEA).

& BioWist

One of the SIP goals is to contribute to the
challenging quest for accurate tools to predict the

drug-induced liver injury (DILI) potential associated
with drug candidates approaching clinical use.

Intelligence in healthcare

Sip.. bio

The Safety Intelligence Program (SIP) Board welcomes the opportunity to comment on the CHMP
Draft Non-clinical Guidelines on Drug-induced Hepatotoxicity. SIP is an industry led initiative that
hamnesses the expertise of its pharmaceutical members, Biowisdom and other key stakeholders to
build a comprehensive and high quality intelligence resource for use in the practice of drug safety
assessment. SIP strives to ensure that the benefit/risk decisions made for every compound in the
development pipeline or drug on the market is based on having visibility to the best information
possible.

The 2008 priority for SIP is to focus on hepatotexicity, in recognition of the challenge in being able
to predict, monitor and manage the hepatotoxicity risk associated with new chemical entities
approaching approved clinical use. SIP leverages the huge amount of publicly available information
to generate an intelligence resource for the safety science communities working in drug
development. This intelligence resource is created using BioWisdom's established technology
platform (Sofia™) that enables the systematic generation of semantically consistent assertional
meta-data. Assertional meta-data comprise relationships between distinct entities, for example,
*Acetaminophen INDUCES Hepatic Necrosis” or "Bosentan INHIBITS ATP Binding Cassette, Subfamily
B, Member 11", With the capability to reference the original citation, the assertional meta-data can
be analysed systematically to reveal new insights related to specific topics.

Here we present a prepublication report that highlights the power of being able to perform
systematic and comprehensive analyses on assertional meta-data that captures the current status
of knowledge pertaining to a particular area. As an example here, we use an analysis of the degree
of concordance of compound-induced effects in the liver between preclinical species and human,
referencing specifically, the following statement made in the draft guidelines (section 5, point iii):

"With respect to the animal species used in standard non-clinical studies, a general assumption is
that the higher the spedies {rodent, non-rodent, non-human primate) that demonstrates signs of
liver toxicity or histopathological adverse responses, the greater the relevance off clarifying
mechanisms responsible for fiver toxicity. ”

We submit this analysis to the EMEA because we believe it forms part of the necessary evaluation
of historic knowledge that will advance our collective understanding of drug-induced hepatotoxicity
and will ultimately lead to an improved capability to assess risk of new chemical entities for liver
injury.

BioWisdom's Sofia platform was used to generate assertions that describe the effects of known
chemicals in the liver. Vocabularies/thesauri describing 150,000 distinct chemical names and
>6000 liver pathologies, physiolegical processes and clinical chemistry liver biomarkers were used
to generate putative assertions, from publicly accessible information. Specifically, here we used
Medline abstracts and European Public Assessment Reports (EPARs) published by the EMEA. The
assertions were passed through a QC process to ensure they accurately reflected (to >97%) the
statements made by the authors in the documents. Each assertion was supported by one or more
pieces of evidence. Extracted assertions were "semantically normalised” to deal with the
inconsistencies inherent in the way authors describe their observations. This process yields a

@ Biowisdom Ltd, 2008 MNon-Confidential




Intelligence Network Build Process biowisdom

. &N
sofia.

Meta-Search

v v
[ L ] —
Structured Data Sources Unstructured Data Sources Sofia Terminology &

Concept Maps Data Loader Term List

e.g, GO, UMLS, SWISS_PROT e.g, Medline, Patents, FDA SBAs ill Ontology
Data Source Descriptors
P Structured m User Defined

Noun Phrase Discovery

Selected Corpus Raw Assertion Discovery

Automated Relationship Discovery

Assertion Generation Relations Typing

Semantic Normalisation

]

Chemistry Canonicalisation

DocView
(manual validation)

Intelligence Network
Pass

Slide courtesy of Julie Barnes, Biowisdom



Data transformation for the Venn diagram

Species profile for each compound (951) was retrieved from the original
data. This step was done automatically with a program written in Delphi.

- Then, the table required to draw the Venn diagram was calculated:

A B Cc A B c AB AC BC
Name HUMAN RODENT NON-RODENT

(R}-Roscovtine 0 0 1 0 0 0 0

17-Methyltestosterone
1-alpha-Hydroxycholecalciferal

It should be emphasized
that we assume that
each compound has been
tested in all species, i.e.,
humans, rodents and non-

2, 3-Dimercaptosuccinic acid

2 4 6-Trinitrotoluene
2-Deoxy-D-glucose

2 fluora-5-methylarabinosyluracil
2-Methoxyestradiol

4-aminobenzoic acid
4-Hydroxytamoxifen
5 fluorouracil
h-Azacitidine
5-Bromouracil

S-fluoro-2°-deosxyuridine
6-Mercaptopurine

rodents.

Acadesine

Acarbose
Acebutolal
Acenocoumarol 1P RL 7
Acetamide 1 — tOXIC
Acetaminophen

Acetazolamide

Acetic acid

“0” = non-toxic

Acetohexamide Y

S = ek ek ek D ek =k =k ) =k =k () ek =k ek ) | =k =k =k =k =k =k O
T B O T N P R R L A A e e A = N =R ===
o QO = = a0 O O 90 9o o o 0O 0 = 90 90 00000000

ID
L
2
3
4
5
]
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Acetohydroxamic acid

(=T = R A L= L= = =T = R = R = R = R = R = R = R = R == R = R = R = R = R = R =]




Results : the Venn Diagram of Curated Biowisdom data

RODENT
(685)




Results : the Venn Diagrar RODENT
Curated Biowisdom dal

Concordance between humans

and rodents ?
In our opinion it should reflect data on
BOTH toxic and non-toxic compounds!

# toxicants BOTH for humans/rodents + # NON-toxicants BOTH for humans/rodents

Concordance =
Total of tested chemicals

(292 + 110) + 18
Concordance = ~ 44.2 %
951

(Using Biowisdom initial data — 1061 compounds, we found concordance =~ 42.4 %)




Conclus,lons. about concordance ROBENT
across species

H R NR

H 44.2% 39.9%

R 44.2% 39.1%

NR 39.9% 39.1%

- Calculated concordance values between species are very close.

- Surprisingly, there is no large gap between concordance values
between concordances H/R and H/NR is less than 5%) as one could suppose.

- These results are valid if and ONLY IF the following assumption is correct: each
compound has been effectively tested for each category H, R and NR, and in
each case, found either toxic or non-toxic.

For example: we assume that 18 compounds that have been found to be only toxic for
non-rodents have been tested on both humans and rodents and found to be non-toxic.




1. Clustering of 951 compounds in chemical space

The cluster analysis has been pernformed using fragment descriptors, hierarchical algorithm,
Euclidean metrics between compounds, and a complete linkage between clusters.

Small clusters have then been identified with prettW
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1. Clustering of compounds in chemical

/
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NONE RODENT 0
ID =208 ID = 223
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RODENT =0 RODENT =1
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3. QSAR based classification

D RODENT
: (685)

HUMAN Class 1 L Class 2 RODENT

ONLY (248 (283)  ONLY

! !

Compounds found Compounds found
to be toxic to be non-toxic

for humans only for humans

Could we predict the class of a compound from its structure only “
| S




QSAR based classification

HUMANS

RODENS

External 5 fold

Cross validation

1

6

11

16

21

26

31

36

41

46

51

2 I

7

12 I

17

22 IS

o7 IS

32 I

37 I

42 EE—

47 EE—

52 IS
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14—
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34 EE—

390 I

44

49 EEEE—
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5 I

10 I

15 I

20 I

25 I

30 I

35 I

40 T

45 I

50 I

55 I

Etc. NN

r—
Etc. Etc. N

FOLD1 FOLD2 FOLD3 FOLD4 FOLD5

20% of compounds =——p EXTERNAL SET
80% of compounds =——p MODELING SET

Models are built using the modeling set ONLY.




QSAR based classification

Using SUPPORT VECTOR MACHINES (SVM)

Accuracy (%) = (number of compounds correctly predicted )/(total number of compounds)

External set

Fold Modeling set
Accuracy

5 fold CV

Modeling set

Model ID
Accuracy

62.3%
62.9%

64.9%
67.5%
62.4%
65.2%
64.9%
62.1%
63.3%

61.9%

88.2%
77.6%

81.2%
81.2%

91.3%
91.1%
99.3%
84.9%
82.6%

94.4%

71.0%
67.3%

64.2%
93.7%
64.2%
61.3%
72.6%
68.9%
68.9%

70.8%

NB: The results are preliminary, could be improved.

217
162

112

197

194

198

208

151

205

175




3. QSAR based classification

D\ RODENT

Class 1 Class 2
(248) | y (283)

HUMAN 7-- RODENT
ONLY ONLY

EXTERNAL SET
(18 compounds being non-toxic
In humans)
QSAR MODELS




3. QSAR based classification

Modeling set Modeling set External set :
C d Model ID Descriptors
e 5 fold CV Accuracy Accuracy e P

18 62.9% 92.5% 77.8% 206 Fragments
64.0% 97.9% 66.7% 141

Dragon

© “ : Y

. L T/

CND WKJ; S }/ & 14 of 18 compounds are predicted
ey

| élf/@

as non-toxic for humans.

Hepatotoxicity induced by 4 compounds
Is not well predicted BUT:

\@ /—> Missing/incorrect data ???
0

IN THE TRAINING SET:
Sulfadoxine (ID=820)
Human =0
Rodent =
Non-Rodent = 1




Conclusions of Study IV
| T

* We focused on the concordance analysis across species for hepatotoxicity induced by
drugs. Results showed close concordance values (~40%) for Human/Rodents and
Human/Non-Rodents However, this conclusion is valid if and only if we assume
that each compound of the set has been effectively tested for each category
(human, rodent and non-rodent), and in each case, found either toxic or non-
toxic.

Cluster analysis allowed us to identify multiple clusters, in which compounds belong to
congeneric series. Similar toxicity profiles are observed for certain clusters Similarity
in chemical space could help to double check the toxicity reported in the
literature for different species.

QSAR models have been generated to predict the toxicity of compounds for humans.
Despite the apparent diversity of data, models show fairly good prediction power
assessed by five-fold cross validation procedures, and confirmed by the application of
models to an external set of 18 compounds (under the same assumption of the
completeness of toxicity testing across all compounds and species).




Final Thoughts

e Focus on accurate prediction of external datasets 1s much
more critical than accurate fitting of existing data

validation!!!
applicability domain
consensus prediction using all acceptable models

Ideally, experimental validation of a small number of
computational hits

Predictive QSAR workflow with extensive validation
affords statistically significant models

— reliable property predictors

— decision support tools in selecting experimental screening sets

 HTS and —omics data may be insufficient to achieve the
desired accuracy of the end point property prediction BUT
should be explored as biodescriptors in combination with
chemical descriptors
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